Towards finding the fundamental unit of narrative: A Proposal for the Narreme

Alok Baikadi, Rogelio E. Cardona-Rivera

North Carolina State University
{abaikad, recardon}@ncsu.edu

Abstract

Verb- and action-based event representations have been the cornerstone of narrative representation. However, these suffer from a lack of specificity as to the level of abstraction being discussed. For example, a single verb-based event can be elaborated ad infinitum, generating arbitrarily many new verb-based events. In this position paper, we present a proposal for the fundamental unit of narrative, which we call the narreme. Our contribution is two-fold. First, we present the structure of the narreme, which encodes the state of the narrative, not the state of the world. Second, we present the ways narremes can be combined, which gives rise to the structure of the narrative itself. These combinations have special properties which account for the causal, temporal and intentional relationships between the events that make up a narrative. Lastly, we present an interpretation of common narrative tasks within the context of the narreme.

1. Introduction

Many approaches to computational models of narrative discretize the narrative into events that are typically defined in terms of verbs, for the case of text, and actions, for the case of films (Riedl et al., 2003; Szilas, 2003; Chambers and Jurafsky, 2009; Elson and McKeown, 2009; Jhala and Young, 2010). While this level of abstraction is useful as an initial step toward a computational model of narrative, the distinction of what constitutes an event is arbitrary. Moreover, the flexibility of these units for incorporation into hierarchical structure presents a problem when trying to identify a suitable level of abstraction for action in a narrative. This in turn makes it difficult to compare approaches to computational models of narrative that differ in the level of abstraction used. For example, the action of walking to the store to buy milk could be decomposed ad infinitum into subsequences of actions. Consider one such decomposition: getting up, exiting the house, driving the car into the parking lot, entering the store, buying the milk. To help disambiguate what is meant by an event, this position paper presents a proposal for the fundamental unit of narrative, which we call the narreme.

2. Related Work

2.1. The History of the Narreme

The term narreme is borrowed from Dorfman (1969), who also used the term to refer to the fundamental unit narrative, similar to the phoneme in phonology or the morpheme in morphology. Dorfman considered narremes to be the fundamental substructures of narrative, however, Dorfman is unclear as to how these narremes could be combined to form a narrative. Dorfman’s narremes also suffer from the same ambiguity of abstraction as events.

2.2. Barthes’ Narrative Units

In essence, narremes are similar to Barthes’ (1966) characterization of narrative units. However, Barthes characterizes several types of narrative units, with varying degrees of importance:

- functions are narrative units that provide the basis of the narrative. They can be informally described as action-reaction sequences. For example, a telephone ringing is a function which associates the telephone ring to someone picking the phone up.
- indices are narrative units that expand upon the functions by providing detailed descriptions of the actions that take place. If a telephone was ringing softly, then the adjective “softly” is an index on the function of the telephone ringing.

Barthes indicates that these narrative units are combined hierarchically and sequentially, but makes no commitment as to how this combination would work. Barthes’ theory has lead to successful efforts to computationally model certain types of narratives (Cavazza et al., 2001). Despite this success, we believe that Barthes’ approach conflates the distinction between a narrative’s fabula, or the story behind the telling, and the narrative’s discourse, or the telling itself, as described by narratologists (Bal, 1997). This distinction, we feel, is important for decoupling the modeling of aspects that relate to the story (e.g. the actual interactions of the characters (Szilas, 2003) or the narrative’s conflict (Ware and Young, 2010)) and the modeling of aspects that relate to the telling (e.g. the communicative intent of the story’s author (Young, 2007)). Our definition of narremes operates at the level of fabula.

2.3. Narrative Change

The narratologist Rimmon-Kenan (2002) defines a useful notion of events that we build off to define the narreme:

To make this a bit more useful for the purpose of the present study, one might add that when something happens, the situation usually changes. An event, then, may be said to be a change from one state of affairs to another.

Our definition uses a similar notion of change as a criterion for distinguishing narremes from each other.

3. The Narreme

One of the fundamental properties of narrative is the concept of change. An individual narreme encodes the state of the narrative, along one or several dimensions in
narrative space. This dimension is known as a narrative axis.

Definition 1 (Narrative Axis) A narrative axis is a dimension which captures changes between world states. The dimension can be any measure that allows for quantization in categorical or numeric units other than world time. Intentional narrative axes describe intentionally directed change between world states, while coincidental narrative axes do not.

The world time represents the true total ordering of events relative to the story world. It is the “clock time” related as the story moves forward. This is contrasted with narrative time.

Definition 2 (Narrative Time) Narrative time is the relative time to the Point of View character(s) in the narrative. Narrative time is monotonically increasing through the development of the fabula.

While both narrative time and world time are often aligned, it is possible for one to depart from the other. Consider as an example a time travel narrative. Narrative time progresses forward from the point of view of those characters, while they experience different segments of world time. Given the previous definitions, we define the narreme as follows:

Definition 3 (Narreme) A narreme is the basic unit of narrative structure. It encodes the state of the narrative, rather than the state of world in which the narrative takes place. A narreme is atomic along one or more narrative axes over narrative time.

It is important to note that narrames do not necessarily exclude the notion of verb-based event representations; it is possible for a verb-based representation to encode a unit of change along a narrative axis. Narremes make a commitment to a level of abstraction insofar as a particular narrative axis defines one. A narrative axis is, in essence, a criterion for determining a level of abstraction. For example, the narratologist Hogan (2011) claims that a narrative is composed of minimal units of emotional temporality. These minimal affective units could be one of several dimensions that narrames describe.

Given a formal description of the minimal units of narrative, we now describe a potential way to combine them in order to produce narrative structure.

4. The Narrative Structure

The narrative structure is made up of connections between narrames. These connections form a graph structure with the narrames as nodes. An edge exists between two nodes, exactly when there is a change along at least one narrative axis. These edges have several properties which are important to consider:

- **There are no self loops.** Since a pair of narrames are connected when there is a change along a narrative axis, there cannot exist a link between a narreme and itself.

- **The edges are directed.** Two narrames are connected when there is a change along at least one narrative axis. A narrative axis is defined by changes over narrative time. Since narrative time is monotonic, these connections imply an ordering, which means the edge must be directed.

- **The graph is acyclic.** Because edges exist over narrative time, and narrative time is monotonic, there cannot be a loop in the graph.

These properties reveal that the edges induce a directed acyclic graph structure over narrames. These properties are necessary, but not sufficient in our definition of narrative. Narratologists (e.g. Bal (1997)) consider that the key ingredients in a fabula are the causal, temporal, and intentional relationships between the events that make up the narrative. Therefore, we must be able to reconstruct these relationships from our graph structure:

- **Temporal relationships** follow from the definition of narrative time.

- **Causal relationships** occur between sets of edges between narrames. A narreme causally relates subsets of incoming edges to subsets of outgoing edges.

- **Intentional relationships** occur between an incoming edge along an intentional narrative axis and a subset of the outgoing edges which are causally related to the incoming edge.

Finally, multiple narrames may be connected to the same narreme, along different axes. Every narrative axis is independent of the others when forming edges between narrames. Put simply, a single narreme can affect several future ones, though not all in the same way.

5. Final Thoughts

Our definition of narreme is not inconsistent with current computational models of narrative. Rather it simply allows to specify the level of abstraction that these models should operate at. This representation allows a basis of comparison for different approaches to common narrative tasks, including comprehension, generation and inclusion in an interactive system.

Comprehension can be modeled as the reconstruction of the sequence of narrames. Gernsbacher (1990) described a narrative as a set of instructions which allow you to reconstruct a situation. Comprehension is then the mental process of creating a graph between the various narrames described in the discourse.

Generation can operate over the narrative space by simply searching the space of narrames until a suitable narrative is found. Given their atomicity, narrames can be exchanged indiscriminately, allowing evolutionary approaches to narrative generation.

Interactivity can accommodate narratives by allowing users to act freely within the scope of a single narrame. An interactive narrative system would then concern itself with transitioning the user from one narrame to the next, focusing on maintaining the story structure, while allowing the user a space of interactions within a narrame.

Although we have defined a formal approach the identifying the fundamental unit of narrative, future work is necessary. For instance, identifying the dimensionality of
the narrative space (i.e. number of narrative axes available for the narremes) is paramount. However, we hope that future models will capitalize on the definitions that we have presented here and that our work will help focus the search for a common encoding of computational models of narrative.

6. References

